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A S Y M P T O T I C  P R O B L E M  O F  B E A M  S T A B I L I T Y .  L O S S  O F  

S T A B I L I T Y  I N  B E N D I N G  A N D  B U C K L I N G  

A. G. Kolpakov UDC 539.3 

The present article is a continuation of [1], and is concerned with the stability of a thin (diameter e ---, 0) beam 
considered initially as a three-dimensional body. The limiting problem for a one-dimensional structure (beam) is obtained on 

the basis of an asymptotic expansion of the solution of a problem in elasticity theory in the limit to small diameters. As in [1], 

the elastic constants of the material are of order e -4 ,  which ensures that the beam will have non-vanishing flexural rigidity as 

e --, 0. In [1] the classical problem of the theory of beam stability was found under the condition that the initial stresses in the 
beam are of order e -2  (i.e., the reciprocal of the length of the diameter of the beam). In this problem the loss of  stability is 

caused by the presence of a non-vanishing axial compressive force [1]: (ali  *(-2)) ;~ 0 (the angular brackets denote the average 

computed with respect to an element of the structure of the beam; see below). What might be expected if the axial force is 
zero? In this case initial stresses that induce a loss of stability may arise in the beam (understood as a three-dimensional body). 

It seems reasonable to suppose that such self-balancing stresses would be so large in magnitude as to induce a loss of  stability. 
In the present article this hypothesis is supported by considering initial stresses of order e -3 with condit ion (Gll *(-3)) = 0. 

Below it will be shown that in the situation we are considering, a loss of stability may by initiated by the moments of  the initial 
stresses. The investigation of initial stresses of  even higher orders represents a separate problem (the latter problem is discussed 
in [5-8], though not for thin bodies). 

We analyze the problem on the basis of a two-scale method in a version for beams [1-4] that allows us to consider both 

nonhomogeneous beams of periodic structure as well as homogeneous, cylindrical beams [3] as a special case. 

1. Statement  of  Problem.  We wish to consider a region f]e obtained by periodic repetition of a periodicity cell Pe, 
along the axis Ox~ from - a  to a (see Fig. 1). The characteristic dimension of the periodicity cell e << 1, a fact which is 
formally stated in the form e --- 0. As e --, 0, the region fie shrinks to the closed interval [ - a ,  a] on the axis Ox~. 

By the results of  [9], the equilibrium problem for a body with initial stresses has the form 

fg,~ avi h--~-, dx  = 0 (1.1) 
v ~ j  

9c 

for any test function v E V(f~ e) = {v E HI(fie): v(x) = 0 for xl = +a}.  (For the definition of these classes of  functions, see 
[4].) The relationship between the current stresses true, displacements u e, and initial stresses crij*(-3) is as follows: 

aul 
a~j = (e-4alikl(x/e) + e-3bljkl(Zl, x / e ) )  #xt"  (1.2) 

Here e-4aijk/(X/e) is the tensor of  the elastic constants; bijk/(Xl, x/e) = trjl*(-3)(Xl, x/e)tSik; and t~ik is the Kronecker symbol 
[91. 

Accordingly, the following condition is imposed on the initial stresses: 

(_*(-3)x 
"i l  / = O, 

where (.) = I f .  dy  is the average taken over the periodicity cell P, (see Fig. 1). 
PI 
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2. Method of Asymptotic Expansion. In the present study we are considering a loss of stability with respect to global 

forms, i.e., associated with the appearance of global shifts u e accompanied by stable deformations within the periodicity cell. 
Asymptotic expansions of the displacements and stresses, and of the test function are selected in the form proposed in [2] for 

the case of beams: 

Ue = u (O) (z l )  Al- eU(1) (Z l ,  y )  "Jr" �9 �9 �9 = E e n U ( n ) ( Z l '  Y); (2 .1)  

oo 

- -  + - - .  ; ( 2 . 2 )  m----.--4 

oo 
v = v(~ + e v ( 1 ) ( z t , y )  + . . . .  E ~nv(n) (z l 'Y)  (2.3) 

~=0 

(here y = x/e are rapid (local) variables, and x 1 E I - a ,  a] is a slow variable). The functions on the right sides of (2.1)-(2.3) 
are assumed to be periodic with respect to y~ with period m (m is the length of the periodicity cell Pt = {Y = x/e; x E Pc} 

along the axis Oyl; see Fig. 1). 
The derivative of  a function of the form f(xl, y) is calculated by substitution of the differentiation operation according 

to the following rule [21: 

Of  ~ f,l,_}_ _1f,1~, Of --1 OqZl 0 Z a  ~" e / , a l l  (O~ = 2,  3) .  

Here and below the Roman subscripts assume values of 1, 2, and 3, while the Greek subscripts, values of 2 and 3. 

Substituting (2.1) and (2.2) into (1.2) and recalling the differentiation rule just presented, we have 

E emO'!'m) --3 (n) --1 (n) '3 = E en (e -4a i j  kl q" e bijkl)(Uk,l=~l ! q- e Uk,ly ). 
m= --4 n=0 

Here and below we are using the notation lx = O/0x 1 and jy = OlOyj. 
Equating terms with identical powers of e, we obtain, in particular, the following relations: 
in the case e-4:  

= s~kl~Y) k,ly, 

(2.4) 

(2.5) 
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in the case ~-3: 

in the case e-2:  

cr!~-a) = aqkx(y)u(1,1= + aiflct(Y)Ui2,~y "t'bqkx(Xl, Y)Ui~ + bljat(xl,y)u(1,)u; 

a!] "2) u (2) a u (3) (1) 
= a i j k l (Y )  k,lx q" i j k t (Y)  k , ly '}- 'bi jkl(Xi ,Y)Uk,lz  q" bijkl(Xl,Y)U(2,~y �9 

(2.6) 

(2.7) 

Note that the quantifies aij e, O'ij(-4), aij(-3) and (rij(-2) determined by the formulas (1.2) and (2.5)-(2.7) are not symmetric with 

respect to ij. Moreover, in these formulas the following groups of terms may be identified: terms that are symmetric with 
respect to ij (convolution of auk / with the corresponding expressions) and those which are not symmetric (convolution of ~jk/ 
with the corresponding expressions). 

Substitution of (2.2) and (2.3) into the equilibrium equation (1.1) yields, for an appropriate choice of the test function, 
the following relation [2]: 

a(m) = 0 in ~ ,  -('~)-. = 0  on r~, (2.8) ij,j~l v i i  "',1 

where file = {(x 1, Y2, Y3): x E fie}; and n is the normal to the lateral surface F1 e of the region flle. 
3. Equ i l ib~um Equations.  It was already noted in [10, 11] that, in using the asymptotic method, the equilibrium 

equations are obtained independently of the stress-deformation relation, in our case, independently of (1.2). In the case of 
beams, the equations for the axial forces Nij(m) = (aij(m)) and the moments Mia = (tril(m)ya) are presented in [2]. Let us 

present the equilibrium equation from [2] which we will be using below: 

N(-3)  = 0, ~'r(-2) = 0, l~t(-3) N!~ "2) 0. ll,lx "' il,lx - "  ai.lx -I- = (3.1) 

4. Relation Between Forces (and moments)  and the Deformation Characteristics. The special features of the type 
of asymptotic problem which we are considering become clear when studying the governing relations. As will be clear in the 
subsequent presentation, in this case the existence of initial stresses has an effect on the equations which relate the forces and 

moments with the deformation characteristics of the beam as well as on the procedure used to eliminate the unknown functions 

(which, in the case of  classical beams, have the meaning of cross forces) from the equilibrium equations. There is no such state 
in the case of  unstressed beams [2]. 

Let us consider problem (2.8) with m = - 4 .  By (2.5), 

o.!~-4) (1) (o) z = ai jk l (y )uk , lu  -t- a i j k l ( y ) u k , l z (  1)- (4.1) 

The solution of this problem is presented in [2]: 

+ (4.2) 

Here ~(x l) is an arbitrary function (having the sense of beam buckling); V(xl), an arbitrary function (having the sense of  an 

axial displacement); s i = 0; s 2 = - 1; and s 3 = 1; and {el} and the basis vectors of a standard rectangular coordinate system; 

f~ -- ( 2 if ~ ---- 3, 
2,3;  3 : i f  /~-----2. L 

Substitution of (4.2) into (2.6) yields 
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u (2) 
0'!; 3} = --aijll (Y )yat~{aO}l.lx.(Zl ) ..[- aijkl (y  ) Vk,lz( Zl ) "4" aljkl(Y ) k,llt"b 

+alia1 (Y)Sa Y~ ~,lffi (z l )  + bija, (zl,  y ) u ~ = ( z , ) -  

(o) z -bi j la(Zl ,  y)ua , l=(1)  q" bij/3~3(zl, Y) sfl~(:Vl). 

(4.3) 

Now let us consider problem (2.8) with m = - 3 ,  where aij(-3) are determined by (4.3). 
Proposition 1. Suppose that the initial stresses satisfy the equilibrium equations 

Oxj = 0  in ~e, a~in j = O  on Fc; (4.4) 

whence 

bijal,jy = bijl~d~ = bii~hj~ = O. (4.5) 

The latter equality follows from the definition of bijk/and the following equalities: 

�9 (-a) = 0 in f~ ,  tr~f-a)nj = 0 on r~, ~r ij,jy (4.6) 

which are obtained from the equations presented earlier if expansions of the form aij* = e-3trij*(-3) +. . .  are substituted into 
these equations and Remark 1 (see below) is noted. 

By Proposition i the ffmal terms in (4.3) (i.e., those which contain bijkt) may be omitted in solving problem (2.8); we 
will, in fact, do just that. 

Remark 1. In considering problems involving variables y, the functions of the variable x~ play the role of a parameter. 
The same thing occurs in the case of integration with respect to the variable y. 

In view of this remark, the solution of problem (2.8) with m = -3 ,  i.e., the result stated in (4.3) may be represented 
in the following form: 

u(2) 2~ (o) 
= - N  (y) ua,un==(Zl) - yaV,,,l==(Xl) el +Nll(y)Vl,x~(zx) + Xa(y)  qa(zl), (4.7) 

where Nll,  N 2a, and X 3 are the solutions of the cell-based problems corresponding to tension, bending, and buckling, 
respectively, of a structural element of the bar; these solutions were introduced in [2]. Their explicit form in the problem which 

we are considering here is not essential, and, therefore, we will not describe it in detail in the present study. A detailed 
description of these functions is given in [2]. 

Following simple algebra, substitution of (4.7) into (4.3) yields the following: 

O'!; 3} = (aljll(Y) -}- aqktCy)N~l/y(y))V;,lz(Zl) - (aijll(Y)Ya+ 

2~ (o) X a +aijkl(y)Nk,ly(y))u~,lzlz(Zl) + (aii##(y)sBy ~ + aijkl(y) ~,I~(Y))~,I= (Zl)+ (4.8) 

bijla(Zl, Y))Ua,lz(Zl) + bij~3(Zl, Y) aft ~(z l ) .  + (biaal(Zl, y)  - (o) 

Let us integrate the latter expression with respect to the periodicity cell P~, then multiply (4.8) by y#, and finally 
integrate the result with respect to the periodicity cell P~. Recalling that in integration with respect to y, the functions of the 
argument x~ play the role of parameters, we lrmd that 

N~1-3) = A~ AIau(=~ 4-.Bl~ .: 

M/(;3) 1Ai~l,lz ~2 . (0) B1 ~p,ix (0) = +Bi~au~,,l~= J i ~ .  - -  ~ ' L i f l a ~ a , l z l z  Jr  dr 

(4.9) 

(4.10) 
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Proposition 2. If  aij *(-3) satisfy (4.6) and are periodic with respect to y, with period m, then (aia *(-3)) = 0, ce = 2.3. 

To verify the assertion, we multiply the first equality in (4.6) by ya and integrate the result by parts over the periodicity 
cell P~, recalling the second equality in (4.6) and the fact that oij *(-3) is periodic with respect to y~ (the function Ya is also 

periodic with respect to y~). As a result we obtain the desired result. 
By Proposition 2 and Conditions (1.3) and (4.9), there are no terms present containing U~Ax (~ and ~o. 

The following notation was introduced in (4.9) and (4.10): 

11 
A ~ = (a1111(Y) + allkl(Y)Nk,l~(Y)), 

a N 2a a~c, = ( a l x l l ( y ) y a +  lxkt(Y) k,l~(Y)), 

~1-,'3 = ((ai111(Y) + ai lk t (y )N~u(y) )y3) ,  
2 2 a  Ai,~ = ((ailll(Y)Yc, + ail~t(y)N~,lu(y))y3), 

B ~ = (alj.s~(y)s.ry.v + aijkt(Y)X~,t~t(Y)), 

BiB = ((ail.r~(y)s.sy.r + ailkt(Y)X~,ty(Y))y3), 

Bilge, = ( ( b i l a l  b i 1 1 . ) y 3 )  (0"1~-3)~/~ ' )~ ic ,  t . ( - 3 )  , e  - ~-- - -  ~O'lcf y f l } O i l  

, .(-3) , 
Ji# = (bi]..rZrS.sY3) = ~alZ Y y3)s-toi.y. 

(4.11) 

The first six equalities in (4.11) determine the degree of longitudinal, flexural, and torsional rigidity of the beam. 

Comparing these results with those of [2], it becomes clear that they are the same as for a beam without initial stresses. The 
last two equalities in (4.11) show that in the case under consideration the governing relations depend on the initial stresses, 

though the type of the dependence is not the same as that presented in [9]. The dependence presented in [9] arises when initial 

stresses of order e -4  are considered. 
The equilibrium equations (3.1) may be subdivided into the following groups: 

N( -3)  
11,]= = 0; (4.12) 

N (-2) = 0; 
il,Xz (4.13) 

_ M  (-3) = oi,1= + N/(~ "2) O. (4.14) 

In (4.14) there is an undefined function Nij(-2) present. The procedure of eliminating this function from (4.14) in the 

case when there are no pre-stresses present is as follows [2]: Eq. (4.14) is differentiated with i = 1 

M (-3) _LAr(-2) = 0 ,  
- -  c t l , l z l z  T ~ '  ICI , Iz  (4.15) 

and then (4.13) is applied with i = a 

If  the quantities Nij (-2) were symmetric with respect to ij (as is the case with the stresses aij *(-3) or the forces when 

there are no initial stresses [2]), we would arrive at the classical equilibrium equation -M=t , tx lx  (-3) = 0. In the case we are 
comidering there is no such symmetry. To eliminate Nla  (-2) we isolate the nonsymmetric part N1,,(-2) by representing 

NI,,(-2) in the form Nla(-2)  = Nal (-2) + K= and note that, because the elastic constants aijkl are symmetric [12], there is 
a term in (2.7) containing the unknown function u (3), which is symmetric with respect to ij. Consequently, it is not necessary 

to know u (3) in order to be able to compute K~. 

As a result we obtain 
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Ka N~:  2) N(~ :) (a~ :  2) a(~ 2) ) ((b,,t,1 (*) = -- --'-- -- = -- b " l k l ) ~ k . l z  ) + ((bl~kl  -- b(~lkl)~A(k2,~y ). (4.16) 

Proposition 3. The stresses aii*(-3), described in Propositions 1 and 2 satisfy the following equality: 

( (b l , k t  -- be, lk t)  ui2~v ) -- 0. (4.17) 

To prove the assertion, let us consider the quantity �9 *(-3)u(:) \ Integration by parts on P~ shows that it has the form ~U.Tl k,lyl" 

f o*(-3)u(2)d f _ . ( - 3 ) n  _ (2) j_ [ o . ( - 3 ) n  u(2)d_ - ]  -,l,ly k Y + J % t  l-,~,,v+j .,~ t j, y = o .  

The latter equality follows from (4.6) in view of the fact that the functions o.fl *(-3) and u ~2> are periodic and the fact that the 
normals to the faces 7p of the periodicity cell Pt perpendicular to the axis Oyt (of. Fig. i) are oppositely directed. In view of 
the fact that bijk/ = ojt*(-3)~ik, Eq. (4.17) reduces to the equality considered earlier. 

Substituting the expression for u (1) from (4.2) and the expression for u (2) from (4.7) into (4.16) yields, in view of 
Proposition 1, the following result: 

Ka  ( (bl=kl - (1) ---- balkl)?Zk,lx ) = ( (blor - balll)~q, ~ )/z(~ 
+ ( ( b l ~ l  - b . ~ , ) y ~ ) ~ V , ~  (~1) + (b,~k~ - b~lk~ )Vk,~(~l). 

Substituting bijk/ = aj/*(-3)(~ik into this e q u a l i t y  and using Proposition 2, we lrmd that 

K ,  ( a : ~ - a ) y ,  (o) (4.18) 

Let us now consider the equations for the moment of torsion M = M32 (-3) - M23 (-3). The equilibrium equations for 
M are obtained directly from (4.14): 

-M,I~: + K  = O. 

Here 

Proceeding as before and recalling (2.7) and (4.2) and Proposition 3, we have 

K = - ( (b3211  - b2311)~/o)~(~0,{zla~(Xl) ' + (  (b32~* - b2331)Y/~ )33~ ,1z  ( z , )  + ( b32kl -- b23t,  )Vk,I• (Zl) .  

In view of the fact that bijk/ = Ojl*(-3)dtik, and using Proposition 2, we find that 

.(-3) .(-3) 
K = ( 0"21 ~/2 dr 0"31 ~/3 ) ~ , l z .  

Note that (4.18) and (4.19) may be represented in the form 

n ; &  a ~ , l z ,  K = (M~2 + 33) ~O,lz, 

where Maa* = (a,l*(-3)y3) are the prestressing moments. 
The system of equations which results has the form 

l v ~  = 0; 

(4.19) 

(4.20) 

(4.21) 
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( , . o < ~ r  u(O) . ~ ' A B  u (~ ~ (o) .tvJa~ ̀ Vl,lz, /3)1=clz) W,l• )-1" 1(~)o /3,xz))larl= = -)~ga(u/3,1=lz, ~ 0,1= ),1• ; (4.22) 

(M~ u (~ " ~ A(B23B - B32B)uB,zx +A(A3 - J 3 2 ) q o ) ) 1 a ~  = -AK(tp ,z= ). i, l , lx)  /3,1a:Ix' W,Ix ) -~" (0) (4.23) 

Here N ~ Ma ~ and M ~ denote expressions that correspond to the problem without initial stresses (obtained from (4.9)-(4.11) 

with o'ij*(-3) = 0), while the remaining quantities are given by (4.18) and (4.19). 
For the sake of ease of visualization, Eqs. (4.21)-(4.23) have been written for initial stresses that are proportional to 

the parameter X, i.e., e -3 Xaij *(-3) (in the form of an eigenvalue problem). 

For the coefficients on the left side of (4.22) and (4.23) we find, by (4.11), 

�9 ( -3 )  , 
Bla/~ = - (  0.al Yfl ) = - M ~ , # ,  

�9 ( -3 )  . ( - 3 )  
B 2 3 o - B 3 2 o  : ( 0"11 y3 ) ~ 2 B - (  0"11 y2 )(~30 : M~3~2,G-M~2~3/~) 

t *(--3) , , *(--3) , 
J23 - J32 --- - ~  0"31 Y3 ] - ~ 0"21 Y2 ) = -M~3 - M~2. 

(4.24) 

In the case where the rod ends are rigidly fastened, the boundary conditions for Eqs. (4.21)-(4.23) are as follows [2]: 

V1(4=a) = u(a~ = u(a~ ~o(-t-a) = O. (4.25) 

Thus, a complete boundary-value problem has been obtained for describing a beam as a one-dimensional structure. 
Note that the coefficients of the operator that describes a loss of stability in (4.24) have the sense of the moments of 

the initial stresses. 
Proposition 4. Suppose that the initial stresses satisfy the conditions of Proposition 1, whence 

o-*(-3)- ~ (4.26) ( i,:, u a l = O .  

To prove Eq. (4.26), we need only multiply the first equation in (4.6) by y, 2 and integrate the result by parts, recalling 

the boundary condition in (4.6) and the fact that crib*(-3), Ya and Yl are periodic with respect to y~. 
Recalling that (rij*(-3) is symmetric with respect to ij, we have as a corollary of Proposition 4 in the case i = 1 the 

fact that M,~a* = (%l*(-3)ya) = 0. From the latter result, we fred that K from (4.20) and J23-J32  from (4.24) both vanish. 
On the basis of the results that have been obtained and the results in (4.23) and (4.25), we conclude that in this case a purely 

torsional form of the loss of stability is not possible. 
5. On the Calculation of the Initial Stresses. If  we consider (4.11), we are led to remark that the coefficients AI~ 

Ala 1, IAit ), Aiaa 2, Bij ~ and Bit) 1 are calculated through solving the cell-based problems N 11, N2% and X 3 which are directly 

related to the structure of the beam [1, 2, 4]. At the same time, the coefficients corresponding to a loss of  stability do not 
contain these functions explicitly (see (4.20) and (4.24)). This does not mean that the coefficients of  (4.20) and (4.24) are, in 
general, independent of the structure of the beam, only that the dependence of the coefficients on the beam structure is in the 

form of an implicit relation. 
By the results of [2], the stresses oij *(-3) may be expressed in terms of the solution of the cell-based problem and the 

solution of the boundary-value problem corresponding to (4.6). Substituting this expression into (4.20) and (4.24) yields explicit 
expressions for the coefficients of  (4.20) and (4.24) in terms of the solution of the cell-based problem, In the case we are 

considering, it is best to determine only the moments M~t)* from the solution of the boundary-value problem. Moreover,  the 
dependence of Mat)* on the structure of the beam becomes clear from the dependences of these moments on the coefficients 

A10, Ala  1 , 1Aio , Aiat) 2, Bij 0, and Bij 1. 
For beams that are formed from such structure elements as beams, rods, etc., a circumstance that is also encountered 

often, the methods that are proposed in [13, 14] may be used to solve the cell-based problems. 
In connection with the results that have been obtained here, note that questions related to the loss of  stability of 

nonsymmetric (compound) beams have been considered in structural mechanics (see, for example, [15]) on the basis of the 
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method of hypotheses. There is a degree of analogy between the formulas presented in [15] and those of (4.21)-(4.23), though 

this analogy does not extend beyond the fact that there are expressions containing derivatives of different orders in the terms 
occurring in the equations that correspond to a loss of stability. One difference from the results obtained in [15] worth noting 
is the fact that the formulas (4.21)-(4.23) are valid for homogeneous (non-compound) beams that are experiencing bending and 

twisting moments. 
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